
To Appear in Proc� of ACM Siggraph���

OBBTree� A Hierarchical Structure for

Rapid Interference Detection �

S� Gottschalk M� C� Liny D� Manocha

Department of Computer Science

University of North Carolina

Chapel Hill� NC �������	��

fgottscha�lin�manochag
cs�unc�edu

http���www�cs�unc�edu�geom�OBB�OBBT�html

Abstract� We present a data structure and an algorithm for e�cient and exact

interference detection amongst complex models undergoing rigid motion� The algorithm is

applicable to all general polygonal models� It pre�computes a hierarchical representation

of models using tight��tting oriented bounding box trees �OBBTrees�� At runtime� the

algorithm traverses two such trees and tests for overlaps between oriented bounding boxes

based on a separating axis theorem� which takes less than �		 operations in practice� It has

been implemented and we compare its performance with other hierarchical data structures�

In particular� it can robustly and accurately detect all the contacts between large complex

geometries composed of hundreds of thousands of polygons at interactive rates�

CR Categories and Subject Descriptors� I�
�� �Computer Graphics�� Computa�

tional Geometry and Object Modeling

Additional Key Words and Phrases� hierarchical data structure� collision detection�

shape approximation� contacts� physically�based modeling� virtual prototyping�

�Supported in part by a Sloan fellowship� ARO Contract P�������MA� NSF grant CCR������	
� NSF

grant CCR����	��
� ONR contract N������������
��� ARPA contract DABT������C������ NSFARPA

Science and Technology Center for Computer Graphics � Scienti�c Visualization NSF Prime contract No�

������� and a grant from Ford Motor company�
yAlso with U�S� Army Research O�ce

�

� Introduction

The problems of interference detection between two or more geometric models in static and

dynamic environments are fundamental in computer graphics� They are also considered

important in computational geometry� solid modeling� robotics� molecular modeling� man�

ufacturing and computer�simulated environments� Generally speaking� we are interested in

very e�cient and� in many cases� real�time algorithms for applications with the following

characterizations

�� Model Complexity� The input models are composed of many hundreds of thou�

sands of polygons�

�� Unstructured Representation� The input models are represented as collections

of polygons with no topology information� Such models are also known as �polygon

soups� and their boundaries may have cracks� T�joints� or may have non�manifold

geometry� No robust techniques are known for cleaning such models�

� Close Proximity� In the actual applications� the models can come in close proximity

of each other and can have multiple contacts�

�� Accurate Contact Determination� The applications need to know accurate con�

tacts between the models �up to the resolution of the models and machine precision��

Many applications� like dynamic simulation� physically�based modeling� tolerance checking

for virtual prototyping� and simulation�based design of large CAD models� have all these

four characterizations� Currently� fast interference detection for such applications is a

major bottleneck�

Main Contribution� We present e�cient algorithms for accurate interference de�

tection for such applications� They make no assumptions about model representation or

the motion� The algorithms compute a hierarchical representation using oriented bound�

ing boxes �OBBs�� An OBB is a rectangular bounding box at an arbitrary orientation in

�space� The resulting hierarchical structure is referred to as an OBBTree� The idea of

using OBBs is not new and many researchers have used them extensively to speed up ray

tracing and interference detection computations� Our major contributions are

�� New e�cient algorithms for hierarchical representation of large models using tight�

�tting OBBs�

�� Use of a �separating axis� theorem to check two OBBs in space �with arbitrary ori�

entation� for overlap� Based on this theorem� we can test two OBBs for overlap in

about �		 operations on average� This test is about one order of magnitude faster

compared to earlier algorithms for checking overlap between boxes�

�

� Comparison with other hierarchical representations based on sphere trees and axis�

aligned bounding boxes �AABBs�� We show that for many close proximity situations�

OBBs are asymptotically much faster�

�� Robust and interactive implementation and demonstration� We have applied it to

compute all contacts between very complex geometries at interactive rates�

The rest of the paper is organized in the following manner We provide a comprehensive

survey of interference detection methods in Section �� A brief overview of the algorithm

is given in Section
� We describe algorithms for e�cient computation of OBBTrees in

Section �� Section � presents the separating�axis theorem and shows how it can be used

to compute overlaps between two OBBs very e�ciently� We compare its performance

with hierarchical representations composed of spheres and AABBs in Section �� Section �

discusses the implementation and performance of the algorithms on complex models� In

Section �� we discussion possible future extensions�

� Previous Work

Interference and collision detection problems have been extensively studied in the literature�

The simplest algorithms for collision detection are based on using bounding volumes and

spatial decomposition techniques in a hierarchical manner� Typical examples of bounding

volumes include axis�aligned boxes �of which cubes are a special case� and spheres� and they

are chosen for to the simplicity of �nding collision between two such volumes� Hierarchical

structures used for collision detection include cone trees� k�d trees and octrees �
��� sphere

trees ��	� ���� R�trees and their variants ���� trees based on S�bounds ��� etc� Other spatial

representations are based on BSP�s ���� and its extensions to multi�space partitions �
���

spatial representations based on space�time bounds or four�dimensional testing ��� �� �� �	�

and many more� All of these hierarchical methods do very well in performing �rejection

tests�� whenever two objects are far apart� However� when the two objects are in close

proximity and can have multiple contacts� these algorithms either use subdivision tech�

niques or check very large number of bounding volume pairs for potential contacts� In such

cases� their performance slows down considerably and they become a major bottleneck in

the simulation� as stated in �����

In computational geometry� many theoretically e�cient algorithms have been proposed

for polyhedral objects� Most of them are either restricted to static environments� convex

objects� or only polyhedral objects undergoing rigid motion ���� However� their practi�

cal utility is not clear as many of them have not been implemented in practice� Other

approaches are based on linear programming and computing closest pairs for convex poly�

topes �
� �	� ��� ��� �
�

� and based on line�stabbing and convex di�erences for general

polyhedral models ���� ��� ���� Algorithms utilizing spatial and temporal coherence have

been shown to be e�ective for large environments represented as union of convex polytopes

��	� ���� However� these algorithms and systems are restrictive in terms of application to

general polygonal models with unstructured representations� Algorithms based on interval

arithmetic and bounds on functions have been described in ���� �
� ���� They are able to

�nd all the contacts accurately� However� their practical utility is not clear at the mo�

ment� They are currently restricted to objects whose motion can be expressed as a closed

form function of time� which is rarely the case in most applications� Furthermore� their

performance is too slow for interactive applications�

OBBs have been extensively used to speed up ray�tracing and other interference com�

putations ���� In terms of application to large models� two main issues arise how can we

compute a tight��tting OBB enclosing a model and how quickly can we test two such boxes

for overlap� For polygonal models� the minimal volume enclosing bounding box can be

computed in O�n�� time� where n is the number of vertices ����� However� it is practical

for only small models� Simple incremental algorithms of linear time complexity are known

for computing a minimal enclosing ellipsoid for a set of points �
��� The axes of the min�

imal ellipsoid can be used to compute a tight��tting OBB� However� the constant factor

in front of the linear term for this algorithm is very high �almost
 � �	�� and thereby

making it almost impractical to use for large models� As for ray�tracing� algorithms using

structure editors �
	� and modeling hierarchies �
�� have been used to construct hierarchies

of OBBs� However� they cannot be directly applied to compute tight��tting OBBs for large

unstructured models�

A simple algorithm for �nding the overlap status of two OBBs tests all edges of one

box for intersection with any of the faces of the other box� and vice�versa� Since OBBs

are convex polytopes� algorithms based on linear programming ���� and closest features

computation ���� ��� can be used as well� A general purpose interference detection test

between OBBs and convex polyhedron is presented in ����� Overall� e�cient algorithms

were not known for computing hierarchies of tight��tting OBBs for large unstructured

models� nor were e�cient algorithms known for rapidly checking the overlap status of two

such OBBTrees�

� Hierarchical Methods � Cost Equation

In this section� we present a framework for evaluating hierarchical data structures for

interference detection and give a brief overview of OBBTrees� The basic cost function was

taken from �
��� who used it for analyzing hierarchical methods for ray tracing� Given two

large models and their hierarchical representation� the total cost function for interference

detection can be formulated as the following cost equation

T � Nv � Cv � Np � Cp� ���

�

where

T total cost function for interference detection�

Nv number of bounding volume pair overlap tests

Cv cost of testing a pair of bounding volumes for overlap�

Np is the number primitive pairs tested for interference�

Cp cost of testing a pair of primitives for interference�

Given this cost function� various hierarchical data structures are characterized by

Choice of Bounding Volume� The choice is governed by two con�icting constraints

�� It should �t the original model as tightly as possible �to lower Nv and Np��

�� Testing two such volumes for overlap should be as fast as possible �to lower Cv��

Simple primitives like spheres and AABBs do very well with respect to the second con�

straint� But they cannot �t some primitives like long�thin oriented polygons tightly� On

the other hand� minimal ellipsoids and OBBs provide tight �ts� but checking for overlap

between them is relatively expensive�

Hierarchical Decomposition� Given a large model� the tree of bounding volumes

may be constructed bottom�up or top�down� Furthermore� di�erent techniques are known

for decomposing or partitioning a bounding volume into two or more sub�volumes� The

leaf�nodes may correspond to di�erent primitives� For general polyhedral models� they

may be represented as collection of few triangles or convex polytopes� The decomposition

also a�ects the values of Nv and Np in ����

It is clear that no hierarchical representation gives the best performance all the times�

Furthermore� given two models� the total cost of interference detection varies considerably

with relative placement of the models� In particular� when two models are far apart�

hierarchical representations based on spheres and AABBs work well in practice� However�

when two models are in close proximity with multiple number of closest features� the

number of pair�wise bounding volume tests� Nv increases� sometimes also leading to an

increase in the number pair�wise primitive contact tests� Np�

For a given model� Nv and Np for OBBTreestend to be smaller as compared to those

of trees using spheres or AABBs as bounding volumes� At the same time� the best known

earlier algorithms for �nding contact status of two OBBs were almost two orders of mag�

nitude slower than checking two spheres or two AABBs for overlap� We present e�cient

algorithms for computing tight �tting OBBs given a set of polygons� for constructing a

hierarchy of OBBs� and for testing two OBBs for contact� Our algorithms are able to

compute tight��tting hierarchies e�ectively and the overlap test between two OBBs is one

order of magnitude faster than best known earlier methods� Given su�ciently large mod�

els� our interference detection algorithm based on OBBTrees much faster as compared to

using sphere trees or AABBs�

�

� Building an OBBTree

In this section we describe algorithms for building an OBBTree� The tree construction

has two components �rst is the placement of a tight �tting OBB around a collection of

polygons� and second is the grouping of nested OBB�s into a tree hierarchy�

We want to approximate the collection of polygons with an OBB of similar dimensions

and orientation� We triangulate all polygons composed of more than three edges� The

OBB computation algorithm makes use of �rst and second order statistics summarizing

the vertex coordinates� They are the mean� �� and the covariance matrix� C� respectively

����� If the vertices of the i�th triangle are the points pi� qi� and ri� then the mean and

covariance matrix can be expressed in vector notation as

� �
�

n

nX
i��

�pi � qi � ri��

Cjk �
�

n

nX
i��

�pi
jp

i
k � qijq

i
k � rijr

i
k�� � � j� k �

where n is the number of triangles� pi � pi��� qi � qi��� and ri � ri��� Each of them

is a
 � � vector� e�g� pi � �pi
�
�pi

�
�pi

�
�T and Cjk are the elements of the
 by
 covariance

matrix�

The eigenvectors of a symmetric matrix� such as C� are mutually orthogonal� After

normalizing them� they are used as a basis� We �nd the extremal vertices along each axis

of this basis� and size the bounding box� oriented with the basis vectors� to bound those

extremal vertices� Two of the three eigenvectors of the covariance matrix are the axes of

maximum and of minimum variance� so they will tend to align the box with the geometry

of a tube or a �at surface patch�

The basic failing of the above approach is that vertices on the interior of the model�

which ought not in�uence the selection of a bounding box placement� can have an arbitrary

impact on the eigenvectors� For example� a small but very dense planar patch of vertices

in the interior of the model can cause the bounding box to align with it�

We improve the algorithm by using the convex hull of the vertices of the triangles� The

convex hull is the smallest convex set containing all the points and e�cient algorithms

of O�n lg n� complexity and their robust implementations are available as public domain

packages ���� This is an improvement� but still su�ers from a similar sampling problem a

small but very dense collection of nearly collinear vertices on the convex hull can cause the

bounding box to align with that collection�

One solution is to sample the surface of the convex hull densely� taking the mean and

covariance of the sample points� The uniform sampling of the convex hull surface normalizes

for triangle size and distribution�

One can sample the convex hull �in�nitely densely� by integrating over the surface of

each triangle� and allowing each di�erential patch to contribute to the covariance matrix�

�

Figure � Building the OBBTree� recursively partition the bounded polygons and bound the

resulting groups�

The resulting integral has a closed form solution� We let a point xi in the i�th triangle be

parameterized by s and t as in

xi � pi � s�qi � pi� � t�ri � pi�� s� t � �	� ��

The mean point of the convex hull is then

� �
�

n

nX
i��

�
�

mi

Z
�

�

Z
��t

�

xi ds dt
�

�
�

�n

nX
i��

�

mi
�pi � qi � ri�

where mi � area of i�th triangle � �

�
j�qi � pi�� �ri � pi�j� The elements of the covariance

matrix C have the following closed�form�

Cjk �
�

��n

nX
i��

mi��pij � qij � rij��p
i
k � qik � rik�

� pi
jp

i
k � qijq

i
k � rijr

i
k�� � � j� k �

where pi � pi � �� qi � qi � �� and ri � ri � ��

Given an algorithm to compute tight��tting OBBs around a group of polygons� we

need to represent them hierarchically� Most methods for building hierarchies fall into two

categories bottom�up and top�down� Bottom�up methods begin with a bounding volume

for each polygon and merge volumes into larger volumes until the tree is complete� Top�

down methods begin with a group of all polygons� and recursively subdivide until all leaf

nodes are indivisible� In our current implementation� we have used a simple top�down

approach�

Our subdivision rule is to split the longest axis of a box with a plane orthogonal to

one of its axes� partitioning the polygons according to which side of the plane their center

�

point lies on �a ��D analog is shown in Figure ��� The subdivision coordinate along that

axis was chosen to be that of the mean point� �� of the vertices� If the longest axis cannot

not be subdivided� the second longest axis is chosen� Otherwise� the shortest one is used�

If the group of polygons cannot be partitioned along any axis by this criterion� then the

group is considered indivisible�

If we choose the partition coordinate based on where the median center point lies�

then we obtain balanced trees� This arguably results in optimal worst�case hierarchies for

collision detection� It is� however� extremely di�cult to evaluate average�case behavior� as

performance of collision detection algorithms is sensitive to speci�c scenarios� and no single

algorithm performs optimally in all cases�

Given a model with n triangles� the overall time to build the tree is O�n lg� n� if we

use convex hull� and O�n lg n� if we don�t� The recursion is similar to that of quicksort�

Processing �tting a box to a group of n triangles partitioning them into two subgroups

takes O�n lg n� with convex hull and O�n� without it� Applying the process recursively

creates a tree with leaf nodes O�lg n� levels deep�

� Fast Overlap Test for OBBs

Given OBBTrees of two objects� the interference algorithm typically spends most of its

time testing pairs of OBBs for overlap� A simple algorithm for testing the overlap status

for two OBB�s performs ��� edge�face tests� In practice� it is an expensive test� Other

algorithms based on linear programming and closest features computation exist� In this

section� we present a new algorithm to test such boxes for overlap�

One trivial test for disjointness is to project the boxes onto some axis �not necessarily

a coordinate axis� in space� This is an �axial projection�� Under this projection� each

box forms an interval on the axis� If the intervals don�t overlap� then the axis is called a

�separating axis� for the boxes� and the boxes must then be disjoint� If the intervals do

overlap� then the boxes may or may not be disjoint � further tests may be required�

How many such tests are su�cient to determine the contact status of two OBBs� We

know that two disjoint convex polytopes in
�space can always be separated by a plane

which is parallel to a face of either polytope� or parallel to an edge from each polytope� A

consequence of this is that two convex polytopes are disjoint i� there exists a separating

axis orthogonal to a face of either polytope or orthogonal to an edge from each polytope� A

proof of this basic theorem is given in ����� Each box has
 unique face orientations� and

unique edge directions� This leads to �� potential separating axes to test �
 faces from one

box�
 faces from the other box� and � pairwise combinations of edges�� If the polytopes

are disjoint� then a separating axis exists� and one of the �� axes mentioned above will be

a separating axis� If the polytopes are overlapping� then clearly no separating axis exists�

So� testing the �� given axes is a su�cient test for determining overlap status of two OBBs�

�

B

A

B

Ar

a1 1

a2 2

rB

b2 2

1 1b

L

T

LT

A
A

B

Figure � �L is a separating axis for OBBs A and B because A and B become disjoint intervals

under projection onto �L�

To perform the test� our strategy is to project the centers of the boxes onto the axis�

and also to compute the radii of the intervals� If the distance between the box centers as

projected onto the axis is greater than the sum of the radii� then the intervals �and the

boxes as well� are disjoint� This is shown in �D in Fig� ��

We assume we are given two OBBs� A and B� with B placed relative to A by rotation
�R and translation �T � The half�dimensions �or �radii�� of A and B are ai and bi� where

i � �� ��
� We will denote the axes of A and B as the unit vectors �Ai and �Bi� for i � �� ��
�

These will be referred to as the � box axes� Note that if we use the box axes of A as a

basis� then the three columns of �R are the same as the three �Bi vectors�

The centers of each box projects onto the midpoint of its interval� By projecting the

box radii onto the axis� and summing the length of their images� we obtain the radius of

the interval� If the axis is parallel to the unit vector �L� then the radius of box A�s interval

is

rA �
X
i

jai �A
i � �Lj

A similar expression is used for rB�

The placement of the axis is immaterial� so we assume it passes through the center of

�

box A� The distance between the midpoints of the intervals is j�T � �Lj� intervals� So� the

intervals are disjoint i�

j�T � �Lj �
X
i

jai �A
i � �Lj �

X
i

jbi �B
i � �Lj

This simpli�es when �L is a box axis or cross product of box axes� For example� consider
�L � �A� � �B�� The second term in the �rst summation is

ja� �A
� � � �A� � �B��j � ja� �B

� � � �A� � �A��j

� ja� �B
� � �A�j

� ja� �B
�

�
j

� a�j�R��j

The last step is due to the fact that the columns of the rotation matrix are also the axes

of the frame of B� The original term consisted of a dot product and cross product� but

reduced to a multiplication and an absolute value� Some terms reduce to zero and are

eliminated� After simplifying all the terms� this axis test looks like

j�T� �R�� � �T� �R��j � a�j�R��j � a�j�R��j � b�j�R��j � b�j�R��j

All �� axis tests simplify in similar fashion� Among all the tests� the absolute value of

each element of �R is used four times� so those expressions can be computed once before

beginning the axis tests� The operation tally for all �� axis tests are shown in Table �� If

any one of the expressions is satis�ed� the boxes are known to be disjoint� and the remainder

of the �� axis tests are unnecessary� This permits early exit from the series of tests� so �		

operations is the absolute worst case� but often much fewer are needed�

Degenerate OBBs� When an OBB bounds only a single polygon� it will have zero

thickness and become a rectangle� In cases where a box extent is known to be zero� the

expressions for the tests can be further simpli�ed� The operation counts for overlap tests

are given in Table �� including when one or both boxes degenerate into a rectangle� Further

reductions are possible when a box degenerates to a line segment� Nine multiplies and ten

additions are eliminated for every zero thickness�

OBBs with in�nite extents� Also� when one or more extents are known to be in�nite�

as for a fat ray or plane� certain axis tests require a straight�forward modi�cation� For the

axis test given above� if a� is in�nite� then the inequality cannot possibly be satis�ed unless
�R�� is zero� in which case the test proceeds as normal but with the a�j�R��j term removed�

So the test becomes�

�R�� � 	 and

j�T� �R�� � �T� �R��j � a�j�R��j � b�j�R��j � b�j�R��j

�	

Operation Box�Box Box�Rect Rect�Rect

compare �� �� ��

add�sub �	 �	 �	

mult �� �� �

abs �� �� ��

Table � Operation Counts for Overlap Tests

In general� we can expect that �R�� will not be zero� and using a short�circuit and will cause

the more expensive inequality test to be skipped�

Comparisons� We have implemented the algorithm and compared its performance

with other box overlap algorithms� The latter include an e�cient implementation of closest

features computation between convex polytopes ���� and a fast implementation of linear

programming based on Seidel�s algorithm �

�� Note that the last two implementations

have been optimized for general convex polytopes� but not for boxes� All these algorithms

are much faster than performing ��� edge�face intersections� We report the average time

for checking overlap between two OBBs in Table �� All the timings are in microseconds�

computed on a HP �
����� �

Sep� Axis Closest Linear

Algorithm Features Programming

� � � us �� � �	� us ��	 � �
	 us

Table � Performance of Box Overlap Algorithms

� OBB�s vs	 other Volumes

The primary motivation for using OBBs is that� by virtue of their variable orientation�

they can bound geometry more tightly than AABBTrees and sphere trees� Therefore� we

reason that� all else being the same� fewer levels of an OBBTree need to be be traversed

to process a collision query for objects in close proximity� In this section we present an

analysis of asymptotic performance of OBBTrees versus AABBTrees and sphere trees� and

an experiment which supports our analysis�

In Fig� ��at the end�� we show the di�erent levels of hierarchies for AABBTrees and

OBBTrees while approximating a torus� The number of bounding volumes in each tree

at each level is the same� The � for OBBTrees is much smaller as compared to � for the

AABBTrees�

��

First� we de�ne tightness� diameter� and aspect ratio of a bounding volume with respect

to the geometry it covers� The tightness� � � of a bounding volume� B� with respect to the

geometry it covers� G� is B�s Hausdor� distance from G� Formally� thinking of B and G

as closed point sets� this is

� � max
b�B

min
g�G

dist�b� g�

The diameter� d� of a bounding volume with respect to the bounded geometry is the

maximum distance among all pairs of enclosed points on the bounded geometry�

d � max
g�h�G

dist�g� h�

The aspect ratio� 	� of a bounding volume with respect to bounded geometry is 	 � ��d�

ε

d
ε d dε d

ε

Figure
 Aspect ratios of parent volumes are similar to those of children when bounding nearly

�at geometry�

We argue that when bounded surfaces have low curvature� AABBTrees and sphere

trees form �xed aspect ratio hierarchies� in the sense that the aspect ratio of a node in the

hierarchy will have an aspect ratio similar to its children� This is illustrated in Fig�
 for

plane curves� If the bounded geometry is nearly �at� then the children will have shapes

similar to the parents� but smaller� In Fig
 for both spheres and AABBs� d and � are

halved as we go from parents to children� so 	 � d�� is approximately the same for both

parent and child� For �xed aspect ratio hierarchies� � has linear dependence on d�

Note that the aspect ratio for AABBs is very dependent on the speci�c orientation of

the bounded geometry � if the geometry is conveniently aligned� the aspect ratio can be

close to 	� whereas if it is inconveniently aligned� 	 can be close to �� But whatever the

value� an AABB enclosing nearly �at geometry will have approximately the same 	 as its

children�

Since an OBB aligns itself with the geometry� the aspect ratio of an OBB does not

depend on the geometry�s orientation in model space� Rather� it depends more on the

local curvature of the geometry� For the sake of analysis� we are assuming nearly �at

geometry� Suppose the bounded geometry has low constant curvature� as on the surface of

��

ε

d θ
r d

ε

Figure � OBBs� Aspect ratio of children are half that of parent when bounding surfaces of

low constant curvature when bounding nearly �at geometry�

a large sphere� In Fig� � we show a plane curve of �xed radius of curvature r and bounded

by an OBB� We have d � �r sin
� and � � r�r cos
� Using the small angle approximation

and eliminating
� we obtain � � d���r� So � has quadratic dependence on d� When d is

halved� � is quartered� and the aspect ratio is halved�

We conclude that when bounding low curvature surfaces� AABBTrees and spheres trees

have � with linear dependence on d� whereas OBBTrees have � with quadratic dependence

on d� We have illustrated this for plane curves in the �gures� but the relationships hold for

surfaces in three space as well�

Suppose we use N same�sized bounding volumes to cover a surface patch with area

A and require each volume to cover O�A�N� surface area �for simplicity we are ignoring

packing ine�ciencies�� Therefore� for these volumes� d � O�
q
A�N�� For AABBs and

spheres� � depends linearly on d� so � � O�
q
A�N�� For OBBs� quadratic dependence

on d gives us OBBs� � � O�A�N�� So� to cover a surface patch with volumes to a given

tightness� if OBBs require O�m� bounding volumes� AABBs and spheres would require

O�m�� bounding volumes�

Most contact scenarios do not require traversing both trees to all nodes of a given

depth� but this does happen when two surfaces come into parallel close proximity to one

another� in which every point on each surface is close to some point on the other surface�

�

This is most common in virtual prototyping and tolerance analysis applications� in which

�tted machine parts are tested for mechanical consistency� Also� dynamic simulations often

generate paths in which one object comes to rest against another� It should be also be noted

that when two smooth� highly tessellated surfaces come into near contact with each other�

the region of near contact locally resembles a parallel close proximity scenario in miniature�

and� for su�ciently tessellated models� the expense of processing that region can dominate

the overall collision query� So� while it may seem like a very special case� parallel close

proximity is an abstract situation which deserves consideration when designing collision

and evaluating collision detection algorithms�

Experiments� We performed two experiments to support our analysis� For the

�rst� we generated two concentric spheres consisting of
�� 			 triangles each� The smaller

sphere had radius �� while the larger had radius � � �� We performed collision queries with

both OBBTrees and AABBTrees� The AABBTrees were created using the same process

as for OBBTrees� except that instead of using the eigenvectors of the covariance matrix to

determine the box orientations� we used the identity matrix�

AABB
OBB

Tests

Separation
1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e-02 1e-01 1e+00

Figure � AABBs �upper curve� and OBBs �lower curve� for parallel close proximity �log�log

plot�

The number of bounding box overlap tests required to process the collision query are

shown in Fig� � for both tree types� and for a range of � values� The graph is a log�

log plot� The upper curve is for AABBTrees� and the lower� OBBTrees� The slopes of

the the linear portions the upper curve and lower curves are approximately �� and ���

��

as expected from the analysis� The di�ering slopes of these curves imply that OBBTrees

require asymptotically fewer box tests as a function of � than AABBTrees in our experiment�

Notice that the curve for AABBTrees levels o� for the lowest values of �� For su�ciently

small values of �� even the lowest levels of the AABBTree hierarchies are inadequate for

separating the two surfaces � all nodes of both are visited� and the collision query must

resort to testing the triangles� Decreasing � even further cannot result in more work�

because the tree does not extend further than the depth previously reached� The curve for

the OBBTrees will also level o� for some su�ciently small value of �� which is not shown in

the graph� Furthermore� since both trees are binary and therefore have the same number of

nodes� the OBBTree curve will level o� at the same height in the graph as the AABBTree

curve�

AABB
OBB

Tests

Separation
1e+00

3

1e+01

3

1e+02

3

1e+03

3

1e+04

3

1e-03 1e-02 1e-01 1e+00

Figure � AABBs �upper curve� and OBBs �lower curve� for point close proximity� �log�log

plot�

For the second experiment� two same�size spheres were placed next to each other� sepa�

rated by a distance of �� We call this scenario point close proximity� where two nonparallel

surfaces patches come close to touching at a point� We can think of the surfaces in the neigh�

borhood of the closest points as being in parallel close proximity � but this approximation

applies only locally� We have not been able to analytically characterize the performance�

so we rely instead on empirical evidence to claim that for this scenario OBBTrees require

asymptotically fewer bounding box overlap tests as a function of � than AABBTrees� The

results are shown in Fig� �� This is also a log�log plot� and the increasing gap between

��

the upper and lower curves show the asymptotic di�erence in the number of tests as �

decreases� Again� we see the leveling o� for small values of ��

Analysis� A general analysis of the performance of collision detection algorithms which

use bounding volume hierarchies is extremely di�cult because performance is so situation

speci�c� We assumed that the geometry being bounded had locally low curvature and

was �nely tessellated� This enabled the formulation of simple relationships between � and

d� We also assumed that the packing e�ciency of bounding volumes was perfect so as to

formulate the relationships between d and the area of the surface covered� We believe that

the inaccuracies of these assumptions account for the deviations from theory exhibited in

the graph of Fig� ��

For surface patches with high curvature everywhere� such as a
D fractal� we may not

expect to see asymptotic performance advantages for OBBs� Similarly� a coarse tessel�

lation of a surface will place a natural limit on the number� N � the number of volumes

used to approximate the surface� For a coarse tessellation� OBB�� sphere�� and AABB�

Trees may have to traverse their entire hierarchies for su�ciently close proximity scenarios�

thus requiring approximately the same number of bounding volume overlap tests� Fur�

thermore� for scenarios in which parallel close proximity does not occur� we don�t expect

the quadratic convergence property of OBBs to be of use� and again don�t expect to see

superior asymptotic performance�

 Implementation and Performance

The software for the collision detection library was written in C��� The primary data

structure for an OBB is a �box� class whose members contain a rotation matrix and

translation vector� de�ning its placement relative to its parent� pointers to its parent and

two children� the three box dimensions� and an object which holds a list of the triangles the

box contains� The overall data structure for the box occupies ��� bytes� The tree formed

from boxes as nodes� and the triangle list class� are the only compound data structures

used�

An OBBTree of n triangles contains n leaf boxes and n�� internal node boxes� In terms

of memory requirements� there are approximately two boxes per triangle� The triangle

itself requires � double precision numbers plus an integer for identi�cation� totaling �� bytes

�based on ���bit IEEE arithmetic�� The memory requirement therefore totals ��� bytes per

triangle in the model� This estimate does not include whatever overhead may exist in the

dynamic memory allocation mechanism of the runtime environment� Using quaternions

instead of rotation matrices �to represent box orientations�� results in substantial space

savings� but need �
 more operations per OBB overlap test� Single precision arithmetic

can also be used to save memory�

��

��� Robustness and Accuracy

The algorithm and the implementations are applicable to all unstructured polygonal mod�

els� The polygons are permitted to be degenerate� with two or even one unique vertex�

have no connectivity restrictions� The algorithm requires no adjacency information� This

degree of robustness gives the system wider applicability� For example� space curves can

be approximated by degenerate triangles as line segments � the system will correctly �nd

intersections of those curves with other curves or surfaces�

The OBB overlap test is very robust as compared to other OBB overlap algorithms�

It does not need to check for non�generic conditions such as parallel faces or edges these

are not special cases for the test and do not need to be handled separately� As a series

of comparisons between linear combinations� the test is numerically stable there are no

divisions� square roots� or other functions to threaten domain errors or create conditioning

problems� The use of an error margin� �� guards against missing intersections due to

arithmetic error� Its value can be set by the user�

Since the �ow of control for the overlap test is simple and the number of operations

required is small� the overlap test is a good candidate for microcoding or implemented

in assembly� The test could also be easily implemented in hardware� Since most of the

collision query time is spent in the overlap tests� any such optimization will signi�cantly

improve overall running time�

The Qhull package ��� is optionally used for computing the OBB orientation� It has

been found to be quite robust� If we do use Qhull� we have to ensure that the input to

Qhull spans
 dimensions� If the input is rank de�cient� our current implementation skips

the use of Qhull� and uses all the triangles in the group� A more complete solution would

be to project the input onto a lower dimensional space� and compute the convex hull of

the projection �Qhull works on input of arbitrary speci�ed dimension� but the input must

be full rank��

There is the issue of propagation of errors as we descend the hierarchies� performing

overlap tests� When we test two boxes or two triangles� their placement relative to one

another is the result of a series of transformations� one for each level of each hierarchy we

have traversed� We have not found errors due to the cascading of transformation matrices�

but it is a theoretical source of errors we are aware of�

��� Performance

Our interference detection algorithm has been applied to two complex synthetic environ�

ments to demonstrate its e�ciency �as highlighted in Table
�� These �gures are for an

SGI Reality Engine ��	 MHz R�			 CPU� ��� MB��

A simple dynamics engine exercised the collision detection system� At each time step�

the contact polygons were found by the collision detection algorithm� an impulse was

��

applied to the object at each contact before advancing the clock�

Scenario Pipes Torus

Environ Size ��
��	 pgns ��			 pgns

Object Size ��
��	 pgns �				 pgns

Num of Steps �		� ����

Num of Contacts �
�	� ����

Num of Box�Box Tests ��	���� �	�����

Num of Tri�Tri Tests ����� �	��

Time ���� secs ��� secs

Ave� Int� Detec� Time ��� msecs ��	 msecs

Ave� Time per Box Test ��� usecs ��
 usecs

Ave� Contacts per Step ��	 ���

Table
 Timings for simulations

In the �rst scenario� the pipes model was used as both the environment and the dynamic

object� as shown in Fig� �� Both object and environment contain ��	�			 polygons� The

object is �� times smaller in size than the environment� We simulated a gravitational

�eld directed toward the center of the large cube of pipes� and permitted the smaller cube

to fall inward� tumbling and bouncing� Its path contained �		� discrete positions� and

required ���� seconds to determine all �
�	� contacts along the path� This is a challenging

scenario because the smaller object is entirely embedded within the larger model� The

models contain long thin triangles in the straight segments of the pipes� which cannot be

e�ciently approximated by sphere trees� octrees� and AABBTrees� in general� It has no

obvious groups or clusters� which are typically used by spatial partitioning algorithms like

BSP�s�

The other scenario has a complex wrinkled torus encircling a stalagmite in a dimpled�

toothed landscape� Di�erent steps from this simulation are shown in Fig� �	� The spikes

in the landscape prevent large bounding boxes from touching the �oor of the landscape�

while the dimples provide numerous shallow concavities into which an object can enter�

Likewise� the wrinkles and the twisting of the torus makes it impractical to decompose

into convex polytopes� and di�cult to e�ciently apply bounding volumes� The wrinkled

torus and the environment are also smooth enough to come into parallel close proximity�

increasing the number of bounding volume overlap tests� Notice that the average number

of box tests per step for the torus scenario is almost twice that of the pipes� even though

the number of contacts is much lower�

We have also applied our algorithm to detect collision between a moving torpedo on

a pivot model �as shown in Fig� ��� These are parts of a torpedo storage and handling

��

room of a submarine� The torpedo model is ���	 triangles� The pivot structure has �����

triangles� There are multiple contacts along the length of the torpedo as it rests among

the rollers� A typical collision query time for the scenario shown in Fig� � is �		 ms on a

�		MHz R��		 CPU� �GB SGI Reality Engine�

��� Comparison with Other Approaches

A number of hierarchical structures are known in the literature for interference detection�

Most of them are based on spheres or AABBs� They have been applied to a number of

complex environments� However� there are no standard benchmarks available to compare

di�erent algorithms and implementations� As a result� it is non�trivial to compare two

algorithms and their implementations� More recently� ���� have compared di�erent algo�

rithms �based on line�stabbing and AABBs� on models composed of tens of thousands of

polygons� On an SGI Indigo� Extreme� the algorithms with the best performance are able

to compute all the contacts between the models in about ��� � ��� of a second� Just

based on the model complexity� we are able to handle models composed of hundreds of

thousands of polygons �with multiple parallel contacts� in about ���� � ���� of a second�

We also compared our algorithm with an implementation of sphere tree based on the algo�

rithm presented in ����� A very preliminary comparison indicates one order of magnitude

improvement� More comparisons and experiments are planned in the near future�

��� RAPID and benchmarks

Our implementation of our algorithms is available as a software package called RAPID

�Rapid and Accurate Polygon Interference Detection�� It can be obtained from

http�

www�cs�unc�edu
�geom
OBB
OBBT�html�

Most of the models shown in this paper are also available� as well as precomputed motion

sequences�

Overall� we �nd that given two large models in close proximity� with Cv� Nv� and Np

from the cost equation ���

� Cv for OBBTrees is one�order of magnitude slower than that for sphere trees or

AABBs�

� Nv for OBBTrees is asymptotically lower than that for sphere trees or AABBs� Like�

wise� Np for OBBTrees is asymptotically lower�

Thus� given su�ciently large models in su�ciently close proximity� using OBBTrees require

less work to process a collision query than using AABBTrees or sphere trees�

��

� Extensions and Future Work

In the previous sections� we described the algorithm for interference detection between two

polygonal models undergoing rigid motion� Some of the future work includes its specializa�

tion and extension to other applications� These include ray�tracing� interference detection

between curved surfaces� view frustum culling and deformable models� As far as curve

and surface intersections are concerned� current approaches are based on algebraic meth�

ods� subdivision methods and interval arithmetic �
��� Algebraic methods are restricted to

low degree intersections� For high degree curve intersections� algorithms based on interval

arithmetic have been found to be the fastest �
��� Such algorithms compute a decomposi�

tion of the curve in terms of AABBs� It will be worthwhile to try OBBs� This would involve

subdividing the curve� computing tight��tting OBBs for each segment� and checking them

for overlaps�

In terms of view frustum culling� most applications use hierarchies based on AABBs�

Rather� we may enclose the object using an OBBTree and test for overlap with the view

frustum� The overlap test presented in Section � can be easily extended to test for overlap

between an OBB and a view frustum�

Libraries and Benchmarks� There is great need to develop a set of libraries and bench�

marks to compare di�erent algorithms� This would involve di�erent models as well as

scenarios�

� Conclusion

In this paper� we have presented a hierarchical data structure for rapid and exact inter�

ference detection between polygonal models� The algorithm is general�purpose and makes

no assumptions about the input model� We have presented new algorithms for e�cient

construction of tight��tting OBBTrees and overlap detection between two OBBs based on

a new separating axis theorem� We have compared its performance with other hierarchies

of spheres and AABBs and �nd it asymptotically faster for close proximity situations�

The algorithm has been implemented and is able to detect all contacts between complex

geometries �composed of a few hundred thousand polygons� at interactive rates�

� Acknowledgements

Thanks to Greg Angelini� Jim Boudreaux� and Ken Fast at Electric Boat for the model of

torpedo storage and handling room�

�	

References

��� A�Garica�Alonso� N�Serrano� and J�Flaquer� Solving the collision detection problem�

IEEE Computer Graphics and Applications� �
�
�
���
� �����

��� J� Arvo and D� Kirk� A survey of ray tracing acceleration techniques� In An Introduc�

tion to Ray Tracing� pages �	������ �����

�
� D� Bara�� Curved surfaces and coherence for non�penetrating rigid body simulation�

ACM Computer Graphics� ����������� ���	�

��� B� Barber� D� Dobkin� and H� Huhdanpaa� The quickhull algorithm for convex hull�

Technical Report GCG�
� The Geometry Center� MN� ���
�

��� N� Beckmann� H� Kriegel� R� Schneider� and B� Seeger� The r!�tree An e�cient and

robust access method for points and rectangles� Proc� SIGMOD Conf� on Management

of Data� pages
���

�� ���	�

��� S� Cameron� Collision detection by four�dimensional intersection testing� Proceedings

of International Conference on Robotics and Automation� pages ����
	�� ���	�

��� S� Cameron� Approximation hierarchies and s�bounds� In Proceedings� Symposium

on Solid Modeling Foundations and CAD�CAM Applications� pages �����
�� Austin�

TX� �����

��� J� F� Canny� Collision detection for moving polyhedra� IEEE Trans� PAMI� ��		��	��

�����

��� B� Chazelle and D� P� Dobkin� Intersection of convex objects in two and three dimen�

sions� J� ACM�
������ �����

��	� J� Cohen� M� Lin� D� Manocha� and M� Ponamgi� I�collide An interactive and exact

collision detection system for large�scale environments� In Proc� of ACM Interactive

�D Graphics Conference� pages �������� �����

���� R�O� Duda and P�E� Hart� Pattern Classi�cation and Scene Analysis� John Wiley and

Sons� ���
�

���� Tom Du�� Interval arithmetic and recursive subdivision for implicit functions and

constructive solid geometry� ACM Computer Graphics� ������
���
�� �����

��
� J� Snyder et� al� Interval methods for multi�point collisions between time dependent

curved surfaces� In Proceedings of ACM Siggraph� pages
���

�� ���
�

��

���� E� G� Gilbert� D� W� Johnson� and S� S� Keerthi� A fast procedure for computing the

distance between objects in three�dimensional space� IEEE J� Robotics and Automa�

tion� vol RA����
��	
� �����

���� S� Gottschalk� Separating axis theorem� Technical Report TR���	��� Department of

Computer Science� UNC Chapel Hill� �����

���� N� Greene� Detecting intersection of a rectangular solid and a convex polyhedron� In

Graphics Gems IV� pages ������ Academic Press� �����

���� J� K� Hahn� Realistic animation of rigid bodies� Computer Graphics� �����pp� ����

	�� �����

���� M� Held� J�T� Klosowski� and J�S�B� Mitchell� Evaluation of collision detection methods

for virtual reality �y�throughs� In Canadian Conference on Computational Geometry�

�����

���� B� V� Herzen� A� H� Barr� and H� R� Zatz� Geometric collisions for time�dependent

parametric surfaces� Computer Graphics� �����
����� ���	�

��	� P� M� Hubbard� Interactive collision detection� In Proceedings of IEEE Symposium on

Research Frontiers in Virtual Reality� October ���
�

���� M�C� Lin� E�cient Collision Detection for Animation and Robotics� PhD thesis�

Department of Electrical Engineering and Computer Science� University of California�

Berkeley� December ���
�

���� M�C� Lin and Dinesh Manocha� Fast interference detection between geometric models�

The Visual Computer� ����	��������� �����

��
� M� Moore and J� Wilhelms� Collision detection and response for computer animation�

Computer Graphics� ������������� �����

���� B� Naylor� J� Amanatides� and W� Thibault� Merging bsp trees yield polyhedral

modeling results� In Proc� of ACM Siggraph� pages �������� ���	�

���� J� O�Rourke� Finding minimal enclosing boxes� Internat� J� Comput� Inform� Sci��

����
����� �����

���� M� Ponamgi� D� Manocha� and M� Lin� Incremental algorithms for collision detec�

tion between general solid models� In Proc� of ACM�Siggraph Symposium on Solid

Modeling� pages ��
�
	�� �����

���� F�P� Preparata and M� I� Shamos� Computational Geometry� Springer�Verlag� New

York� �����

��

���� S� Quinlan� E�cient distance computation between non�convex objects� In Proceedings

of International Conference on Robotics and Automation� pages

���

��� �����

���� A� Rappoport� The extended convex di�erences tree �ecdt� representation for n�

dimensional polyhedra� International Journal of Computational Geometry and Ap�

plications� ��
�������� �����

�
	� S� Rubin and T� Whitted� A
�dimensional representation for fast rendering of complex

scenes� In Proc� of ACM Siggraph� pages ��	����� ���	�

�
�� H� Samet� Spatial Data Structures	 Quadtree
 Octrees and Other Hierarchical Methods�

Addison Wesley� �����

�
�� T�W� Sederberg and S�R� Parry� Comparison of three curve intersection algorithms�

Computer�Aided Design� ���������
� �����

�

� R� Seidel� Linear programming and convex hulls made easy� In Proc� �th Ann� ACM

Conf� on Computational Geometry� pages �������� Berkeley� California� ���	�

�
�� W�Bouma and G�Vanecek� Collision detection and analysis in a physically based

simulation� Proceedings Eurographics workshop on animation and simulation� pages

�����	
� �����

�
�� H� Weghorst� G� Hooper� and D� Greenberg� Improved computational methods for ray

tracing� ACM Transactions on Graphics� pages ������ �����

�
�� E� Welzl� Smallest enclosing disks �balls and ellipsoids�� Technical Report B ���	��

Fachbereich Mathematik� Freie Universitat� Berlin� �����

�

Figure � Interactive Interference Detection for a Torpedo �shown on the top� on a Pivot

Structure � Torpedo has �	
� triangles� Pivot has ���� triangles� Average time to perform

collision query� ��� msec on SGI Reality Engine with ���MHz R���� CPU

��

Figure � Interactive Interference Detection on Complex Interweaving Pipeline � ��	� 			 poly�

gons each� Average time to perform collision query� ��� msec on SGI Reality Engine with �MHz

R
��� CPU

��

Figure � AABBs vs� OBBs� Approximation of a Torus � This shows OBBs converging to the

shape of a torus more rapidly than AABBs�

��

Figure �	 Interactive Interference Detection for a Complex Torus � Torus has ����� polygons�

Environment has
��� polygons� Average time to perform collision detection� �� msec on SGI

Reality Engine

��

